
Gary Sherman

The
PyQGIS
Programmer’s Guide
Extending QGIS 2.x with Python

PARTIAL SAMPLE



Credits & Copyright

THE PYQGIS PROGRAMMER’S GUIDE
EXTEND ING QGIS 2.X WITH PYTHON

by Gary Sherman

Published by Locate Press LLC

COPYRIGHT © 2014 LOCATE PRESS LLC
ISBN: 978-0989421720
ALL RIGHTS RESERVED.

Direct permission requests to gsherman@locatepress.com or mail:
Locate Press LLC, PO Box 671897, Chugiak, AK, USA, 99567-1897

Cover Design Julie Springer
Interior Design Based on Tufte-LATEXdocument class
Publisher Website http://locatepress.com

Book Website http://locatepress.com/ppg

No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording,
or by any information storage or retrieval system, without the prior written
permission of the copyright owner and the publisher.

PARTIAL SAMPLE



6

Using the Console

The QGIS Python console is great for doing one-off tasks or experimenting
with the API. Sometimes you might want to automate a task using a small
script, and do it without writing a full blown plugin.

In this chapter we’ll take a look at using the console to explore the workings
of PyQGIS, as well as doing some real work.

6.1 Console Features and Options

Let’s take a quick tour of the console features and options. With QGIS
running, open the console using the Plugins->Python Console menu.
Figure 6.1, on the following page shows the console right after opening
it. Normally when you first open the console, it is docked near the bottom
of the QGIS window; in our example, we have undocked it to make the
window a little bigger.

The lower panel of the console is the input area; results of input are dis-
played in the upper panel.

On the left of the console you’ll see a toolbar that contains the following
tools, top to bottom:

Clear console: Clears the console of all previous commands and output

Import class: Import classes from the processing, PyQt4.QtCore, or

PARTIAL SAMPLE



62 CHAPTER 6. USING THE CONSOLE

Figure 6.1: The Python Console

PyQt4.QtGui module by selecting one from the popup list

Run command: Run the current command in the input area

Show editor: Toggle the visibility of the editor

Settings: Configure the console behavior

Help: Open the help window for the console

Console Options

Clicking the Settings button brings up the console options dialog as shown
in Figure 6.2, on the next page.

You can set the font for both the Console and the Editor, as well as enabling
autocompletion. For the Editor, you can enable the object inspector which
allows you to get a nice view of your code.

Lastly, you can choose to use the preloaded API files or untick the box and
manually add your own. Generally you can stick with the preloaded files
as they contain the information needed for autocompletion in the PyQt and
QGIS API.

6.2 Using the Console Editor

The Console Editor provides an environment in which you can edit code,
providing syntax highlighting and autocompletion. This can be useful for

PARTIAL SAMPLE



6.2. USING THE CONSOLE EDITOR 63

Figure 6.2: Python Console Settings

writing concise scripts, prototyping, and testing. Usually you will want to
use your favorite editor or IDE when working on a larger project.

Let’s look at a few of the features found in the editor.

The Toolbar

The Console Editor toolbar is arranged vertically, with the following tools
top to bottom:

Open file: Open a Python script located on disk. Multiple files can be
opened, each assigned to a new tab.

Save: Save the edited script

Save As...: Save the current script to a file with a new name or location

PARTIAL SAMPLE



64 CHAPTER 6. USING THE CONSOLE

Find Text: Search the current script for occurrences of a given text
string

Cut: Cut the selected text to the clipboard

Copy: Copy the selected text to the clipboard

Paste: Paste the contents of the clipboard at the current cursor location

Comment: Comment out the current line or a selected set of lines

Uncomment: Uncomment the current line or a selected set of lines

Object Inspector: Open the object inspector to show a hierarchy of
classes, methods, and functions in the current script

Run script: Run the current script in the console

Loading, Editing, and Running a Script

Let’s load the simple_point.py script that we looked at in Chapter 2,The simple_point.py script can
be found in http://locatepress.
com/files/pyqgis_code.zip,
which includes all the code samples
in the book.

Python Basics, on page 17 and take a look at using it in the Console Editor.

Figure 6.3, on the next page shows our script loaded into the editor and the
Object Inspector panel visible. Here’s what we did to get to the point shown
in the figure:

1. Open the Python Console

2. Click on the Show Editor button

3. Click Open file and load simple_point.py

4. Using the Editor, add the my_function function to the bottom of simple_point.py

5. Click Save to save the file

6. Open the Object Inspector and click the ’+’ to expand the Point node

7. Click the Run script button

8. Enter some commands in the console

>>> my_function()

PARTIAL SAMPLE



6.2. USING THE CONSOLE EDITOR 65

'this does nothing'
>>> p = Point()
>>> p.draw()
drawing the point
>>> p.move(100, 100)
moving the point

Figure 6.3: A Simple Script Loaded in
the Editor

Normally I wouldn’t mix class definitions and non-class functions in the
same source file, but we did it here to illustrate the features of the Object
Inspector. You can see that our class is listed, as well as the class methods
and our new function. This is useful in navigating your code—the real
benefit being when your code exceeds a few dozen lines.

When we click Run script in the Editor, it executes our code in the console.
Since our code just defines a class and one function, there is no output in
the console, however our class and function are now available for use.

In the console panel (left side), you can see the output from our commands.
We’ll take another look at this when we get to Section 7.1, Standalone
Scripts in the Console, on page 73.

Now that we have an overview of the console and editor, let’s put it to use.
In the Introduction, we used the console to manipulate the map view in
QGIS using methods exposed by the qgis.util.iface object. We’ll take it a
bit further now to actually load some data and work with the interface.

PARTIAL SAMPLE



66 CHAPTER 6. USING THE CONSOLE

6.3 Loading a Vector Layer

To begin, let’s load a shapefile into QGIS using the console. To do this, we
will use the world_borders.shp shapefile from the sample dataset.

With QGIS running, open the console using the Plugins->Python Console

menu. Since the qgis.core and qgis.gui modules are imported at startup,
we can start using the API immediately.

To load the shapefile we will use the QgsVectorLayer class by creating an
instance of it and passing the path to the shapefile and the data provider
name. If you recall, we took a look at the documentation for QgsVector-
Layer in Section 5.1, Finding the Documentation, on page 49:

QgsVectorLayer (QString path=QString::null,
QString baseName=QString::null,
QString providerLib=QString::null,
bool loadDefaultStyleFlag=true)

To refresh your memory, the parameters are:

path:
The full path to the layer

basename:
A name to be used in the legend

providerLib:
The data provider to be used with this layer

loadDefaultStyleFlag:
Use the default style when rendering the layer. A style file has a .qml

extension with same name as the layer and is stored in the same location.

First we create the layer in the console:

wb = QgsVectorLayer('/data/world_borders.shp', 'world_borders', 'ogr')

It is possible to create a vector layer that isn’t valid. For example, we can
specify a bogus path to a shapefile:

>>> bogus = QgsVectorLayer('/does/not/exist.shp', 'bogus_layer', 'ogr')
>>> bogus
<qgis.core.QgsVectorLayer object at 0x1142059e0>

PARTIAL SAMPLE



6.3. LOADING A VECTOR LAYER 67

Notice there is no complaint from QGIS, even though the shapefile doesn’t
exist. For this reason, you should always check the validity of a layer before
adding it to the map canvas:

>>> bogus.isValid()
False

If the isValid() method returns False, there is something amiss with the layer
and it can’t be added to the map.

Getting back to our valid, world_borders layer, you’ll notice nothing hap-
pened on the map canvas. We created a layer, however, for it to draw, we
need to add to the list of map layers. To do this, we call a method in the
QgsMapLayerRegistry:

QgsMapLayerRegistry.instance().addMapLayer(wb)

Once we do that, the layer is drawn on the map as shown in Figure 6.4.

Figure 6.4: Using the Console to Load
a Layer

Putting it all together, we have:

wb = QgsVectorLayer('/data/world_borders.shp', 'world_borders', 'ogr')
if wb.isValid():

QgsMapLayerRegistry.instance().addMapLayer(wb)

PARTIAL SAMPLE



68 CHAPTER 6. USING THE CONSOLE

If we want to remove the layer, we use the removeMapLayer() method and
the layer id as an argument:

QgsMapLayerRegistry.instance().removeMapLayer(wb.id())

The layer is removed from both the map canvas and the legend, then the
map is redrawn.

6.4 Exploring Vector Symbology

When you load a vector layer, it is rendered using a simple symbol and a
random color. We can change the way a loaded layer looks by modifying
the attributes of the symbol.

First let’s load our world_borders layer:

>>> wb = QgsVectorLayer('/data/world_borders.shp', 'world_borders', 'ogr')

Next we get a reference to the renderer:15

>>> renderer = wb.rendererV2()
>>> renderer
<qgis.core.QgsSingleSymbolRendererV2 object at 0x114205830>15 Prior to version 2.0, QGIS had both

a “new” and “old” rendering engine. In
the API, the new is referred to as V2. Our layer is rendered using a QgsSingleSymbolRendererV2 which in our

case, is a simple polygon fill.

To get the symbol, we use:

>>> symbol = renderer.symbol()

To get a bit of information about the symbol, we can use the dump() method:

>>> symbol.dump()
u'FILL SYMBOL (1 layers) color 134,103,53,255'

The output shows us that our layer is rendered using a fill symbol (which
we already knew) using a color with RGB values of 134, 103, 53 and no
transparency. Let’s change the color to a dark red and refresh the map:

>>> from PyQt4.QtGui import QColor
>>> symbol.setColor(QColor('#800000'))

Let’s analyze what we did here. To be able to change the color, we imported
the QColor class from the PyQt4.QtGui module. The setColor method takes

PARTIAL SAMPLE



6.4. EXPLORING VECTOR SYMBOLOGY 69

a QColor object as an argument.

QColor(’#800000’) creates a QColor object using a hex triplet string.
When we pass this to setColor the fill color for our layer is set to a dark
red. In Qt, there are many ways to create a QColor, including using twenty
predefined colors that are accessible by name. Here are some ways you can
create a valid QColor:

• QColor(Qt.red)

• QColor(’red’)

• QColor(’#ff0000’)

• QColor(255,0,0,255)

If you try the first method, you’ll get an error because we haven’t imported
Qt. The fix is to import it prior to referencing Qt.red:

from PyQt4.QtCore import Qt

The last method is interesting in that it includes a value for the alpha-
channel (transparency). Using this method of creating the color, we can
also set the transparency of the layer. Each of these methods is described in
the QColor documentation.

You’ll notice that nothing happens on the map canvas when we change the
color. We must tell QGIS to update the map canvas to reflect the changes to
our layer:

>>> iface.mapCanvas().refresh()

This should redraw the map and our layer is now filled with a dark red color.

If nothing happened, it is likely you have render caching set to speed up
map redraws. There are a couple of ways to deal with this—one is to always
invalidate the cache prior to doing the refresh:

>>> wb.setCacheImage(None)
>>> iface.mapCanvas().refresh()

The other is to test to see if there is a cached image for the layer and, if so,
invalidate it and then refresh:

>>> if wb.cacheImage() != None:
... wb.setCacheImage(None)
... iface.mapCanvas().refresh()

PARTIAL SAMPLE



70 CHAPTER 6. USING THE CONSOLE

In practice, the first method should work in all situations, even if it is a bit
“tacky” if render caching is not enabled.

Now that the layer is rendered in our new color, take a look at the legend—it
still shows the previous color. To update it we need to call the refreshLay-
erSymbology method of the legend interface:

iface.legendInterface().refreshLayerSymbology(wb)

6.5 Loading a Raster Layer

Loading rasters is similar to loading a vector layer, except we use the QgsRaster-
Layer class:

QgsRasterLayer (const QString &path,
const QString &baseName=QString::null,
bool loadDefaultStyleFlag=true)

The parameters are the same as QgsVectorLayer, except we don’t need to
provide a data provider name---all rasters use GDAL.

In this example, we’ll load natural_earth.tif raster into QGIS, display
it, and then remove it using the console.See natural_earth.txt in the

sample data set for instructions on
obtaining the Natural Earth raster. To create the raster layer and add to the map, enter the following in the

Python console:

>>> nat_earth = QgsRasterLayer('/data/natural_earth.tif',
... 'Natural Earth')
>>> QgsMapLayerRegistry.instance().addMapLayer(nat_earth)
<qgis.core.QgsRasterLayer object at 0x11483d8c0>

This creates the raster layer and adds it to QgsMapLayerRegistry. Note
that the method used to add both vector and raster layers is the same: ad-
dMapLayer. We don’t have to tell the registry what type of layer we are
loading since QgsVectorLayer and QgsRasterLayer are both a “type” of
QgsMapLayer.1616 In object oriented speak, they are

child classes of QgsMapLayer.

Removing a raster layer is done the same way you remove a vector layer:

>>> QgsMapLayerRegistry.instance().removeMapLayer(nat_earth.id())

PARTIAL SAMPLE

To get the full picture, see http://locatepress.com
to purchase the PDF or print copy.


