
G A R Y S H E R M A N

T H E G E O S PAT I A L
D E S K T O P
O P E N S O U R C E G I S A N D M A P P I N G

The Geospatial Desktop: Open Source GIS and Mapping

by Gary Sherman

Published by Locate Press

Copyright © 2012 Gary Sherman

All rights reserved

978-0-9868052-1-9

No part of this work may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying,
recording, or by any information storage or retrieval system, with-
out the prior written permission of the copyright owner and the
publisher.

Direct permission requests to info@locatepress.com, or mail to
Locate Press, PO Box 4844, Williams Lake, BC, Canada V2G 2V8.

Editor Tyler Mitchell

Cover Design Julie Springer

Interior Design Based on Tufte-LATEX

Publisher Website http://www.locatepress.com

Book Website http://geospatialdesktop.com

info@locatepress.com
http://www.locatepress.com
http://geospatialdesktop.com

Contents

Table of Contents . 3

1 Forward 5

15 GIS Scripting 269
15.1 GRASS . 270

15.2 QGIS . 270

To get the book, see http://locatepress.com

http://locatepress.com

5

1

Forward

Locate Press is proud to bring this second edition of Gary’s book
into print. The original title, Desktop GIS, published by Pragmatic
Press successfully sold out, yet there is increasing pressure to have
it back in print.

It is special in another way too. It is the first title being published
by Locate Press. As our flagship book for this new venture we
are thrilled to have such a well-known and competent author as
Gary Sherman. His enthusiasm and inspiration have been a pivotal
influence in helping us start our publishing endeavour. Thank you
Gary!

We’ve found that it is particularly sought-after by academics look-
ing for a text book for introducing open source GIS into their courses.
Seasoned open source GIS users also have been looking for copies
to give to their friends.

The demand for having long term stable access to titles like this
won’t be going away anytime soon. Open source geospatial tech-
nology continues to take root around the world and across sectors.
Financial crises tend to encourage open source adoption due to the

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

6 CHAPTER 1. FORWARD

low price tag. Likewise more organisations need to adopt open stan-
dards for interoperability and open source geo applications have
proven themselves regularly on that front. So now, more than ever,
users are seeking out high quality training material from subject
matter experts such as Gary.

The movement toward both cloud computing and mobile appli-
cation platforms also puts increased stress on those products that
cannot operate in a free and open source operating system. For-
tunately, most open source geo applications are available across all
major desktop and server operating systems. So when you need to
move from one operating system to the other, your experience will
still be similar to what you will learn in this book.

You are likely to find that this book will fill gaps in ways you didn’t
expect, from practical everyday tips for selecting software to in-
depth examples for completing obscure tasks. I believe this is a
special book, without comparison, as few other authors have yet
taken on the challenge of covering this broad landscape with signif-
icant depth.

Enjoy the book,

Tyler Mitchell
Publisher

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

269

15

GIS Scripting

(Partial Excerpt from The Geospatial Desktop)

Most GIS users that I know end up doing a bit of programming,
regardless of the software they are using. There is always some
little task that is easier done with a script or a bit of code. In this
chapter, we’ll look at some methods for automating tasks in OSGIS
software. You don’t have to be a programmer to do a bit of script
writing, especially when you can get jump-started by downloading
examples and snippets.

The script languages available to you depend on the application you
are using. Applications and tools with a command-line interface
(CLI) can be scripted with most any language available. Others
have bindings for specific languages. Some nonexhaustive examples
include the following:

• GRASS: Shell, Tcl/Tk, Perl, Ruby, Python
• QGIS: Python
• GDAL/OGR: Shell, Perl, Ruby, Python
• PostGIS: Any language that works with PostgreSQL, including

Perl, Python, PHP, and Ruby

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

270 CHAPTER 15. GIS SCRIPTING

Some OSGIS applications even provide bindings that allow you to
write a custom application using a language such as Python.

In this chapter, we will explore some of the techniques used with
these applications.

15.1 GRASS

Since the real core of GRASS is comprised of CLI applications, it’s
pretty easy to use most any scripting language to perform tasks.
From Perl, Python, Ruby, and Tcl/Tk, you can “call” an application
and capture the output. This makes GRASS easy to automate.�

�

�

�

Shell Game

What do we mean by a shell? It’s a command interpreter pro-
vided with your operating system. If you use OS X, Linux, or
a Unix variant, you likely have bash, csh, and/or ksh available
to you. Windows has cmd, which has its own language and
probably isn’t going to be real helpful in shell scripting. Check
out MSYS (mingw.org) and Cygwin (cygwin.org).

Probably the simplest way to automate GRASS tasks is using the
scripting capabilities of your shell. On Linux and OS X, this is a
pretty natural thing to do, because both come with a fully capable
shell. On Windows, you may have to install a Unix-like shell such
as MSYS or Cygwin to be able to accomplish the same results.

15.2 QGIS

Since version 0.9.x, QGIS has included support for scripting with
Python. QGIS provides the following options for using Python:

• Use the Python console from which you can run scripts using the
objects and methods in the QGIS API.

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 271

• Write plugins in Python instead of C++.
• Use PyQt1 to build complete mapping applications using Python 1 http://www.

riverbankcomputing.com/

software/pyqt/intro
and the QGIS libraries.

Why would you want to do any of this? You’d be surprised at the
things you might dream up. QGIS has been designed to make the
libraries easily usable in your own plugins and applications. With
the Python bindings, this brings a whole new world of possibility—
from simple plugins to complete applications. There is a large as-
sortment of Python plugins for QGIS. To find out what’s available,
view the current list from the Plugins→Fetch Python Plugins menu.

We’re going to take a look at a simple plugin to help us get an idea
of what can be done with the PyQGIS bindings. Using Python to get
started is pretty easy, so don’t be afraid if you aren’t a programmer.
Let’s start by looking at the console.

The Python Console

The console is a bit like using Python from the command line. It
lets you interactively enter bits of code and see the result. This is
a good way to experiment with the interface and can actually be
helpful when you are writing a plugin or application.

To bring up the Python console, go to the Plugins menu, and choose
Python Console. The console looks similar to a terminal or com-
mand window. Make sure you read the little tip at the top.

The console is not of much use if we don’t know what to enter into
it. Let’s try a simple example and change the title of the main QGIS
window. The iface object provides you with access to the QGIS
API. Using it, we can reference the main window and set the title:

qgis.utils.iface.mainWindow().setWindowTitle(’Hello from Desktop GIS!’)

In Figure 15.1, on the following page, we can see the result of our

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

http://www.riverbankcomputing.com/software/pyqt/intro
http://www.riverbankcomputing.com/software/pyqt/intro
http://www.riverbankcomputing.com/software/pyqt/intro

272 CHAPTER 15. GIS SCRIPTING

Figure 15.1: Changing the window ti-
tle with Python

little example, with the console in front and the new title showing
on the QGIS window behind it.

Changing the title isn’t all that useful, but it shows you how to
access the interface to the QGIS internals. The console is a good
exploratory tool for learning about the QGIS API.

To manipulate the map canvas, we can try:

qgis.utils.iface.zoomFull()

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 273

This will zoom the map to its full extent. Now you’re probably
wondering how to find out what functions are available. The an-
swer is the QGIS API documentation, available from the website.2 2 http://www.qgis.org/api

The API may be a bit intimidating at first, but it’s very useful, in
fact essential, to our Python exploits. When you use the iface

object in the Python console, you are actually using an instance
of the QgisInterface class.3 If we look at the documentation for 3 http://www.qgis.org/api/

classQgisInterface.htmlQgisInterface, we find functions such as the following:

• zoomFull(): Zoom to full extent of map layers.
• zoomToPrevious(): Zoom to previous view extent.
• zoomToActiveLayer(): Zoom to extent of the active layer.
• addVectorLayer(QString vectorLayerPath, QString baseName,

QString providerKey): Add a vector layer.
• addRasterLayer(QString rasterLayerPath): Add a raster layer

given a raster layer filename.
• addRasterLayer(QString rasterLayerPath, QString baseName=QString()):

Add a raster layer given a QgsRasterLayer object.
• addProject(QString theProject): Add a project.
• newProject(bool thePromptToSaveFlag=false): Start a blank project.

We already used the zoomFull method to zoom to the full extent of
all the layers on our map. You can see there is a lot of potential here
for manipulating the map, including adding layers and projects.
We can use these same methods in our plugins and stand-alone
applications as well. As you dive into PyQGIS, the documentation
will be your friend. You should also keep a copy of the PyQGIS
Developer Cookbook4 handy as well. It contains a lot of information 4 http://www.qgis.org/

pyqgis-cookbook/for doing common operations like adding and working with layers,
dealing with projections, styling layers.

Think of the Python console as a workbench for trying methods and
using classes in the QGIS API. Once you get that under your belt,
you’re ready for some real programming. We’ll start out by creating
a little plugin using Python.

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

http://www.qgis.org/api
http://www.qgis.org/api/classQgisInterface.html
http://www.qgis.org/api/classQgisInterface.html
http://www.qgis.org/pyqgis-cookbook/
http://www.qgis.org/pyqgis-cookbook/

274 CHAPTER 15. GIS SCRIPTING

A PyQGIS Plugin

Writing plugins in Python is much simpler than using C++. Let’s
work up a little plugin that implements something missing from the
QGIS interface. For this exercise, you’ll need QGIS 1.0 or greater,
Python, PyQt, and the Qt developer tools.

Harrison just received the latest Birding Extraordinaire magazine,
and in it he finds an article that describes locations for the exotic
MooseFinch. The locations are in latitude and longitude, whichMooseFinch: A mythical creature

don’t mean much to Harrison unless he’s in his backyard. He fires
up QGIS, adds his layer containing the world boundaries, and be-
gins hunting for the coordinates. Sure, he can use the coordinate
display in the status bar to eventually find what he wants, but
wouldn’t it be nice to be able to just zoom to the coordinates by
entering them? Well, that’s what our little plugin will do for us
(and Harrison).

Before we get started, we need to learn a little bit about how the
plugin mechanism works. When QGIS starts up, it scans certain
directories looking for both C++ and Python plugins. For a file
(shared library, DLL, or Python script) to be recognized as a plugin,
it has to have a specific signature. For Python plugins the require-
ments are pretty simple and, as we’ll see in a moment, something
we don’t have to worry about.

Regardless of your platform, you’ll find your Python plugins are
installed in the .qgis subdirectory of your home directory:

• Mac OS X and Linux: .qgis/python/plugins
• Windows: .qgis\python\plugins

For QGIS to find our Python plugin, we have to place it in the appro-
priate plugin directory for our platform. Each plugin is contained in
its own directory. When QGIS starts up, it will scan each subdirec-
tory in our plugin directory (for example, $HOME/.qgis/python/plugins
on Linux and Mac) and initialize any plugins it finds. Once that’s
done, our Python plugin will show up in the QGIS plugin manager

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 275

where we can activate it just like the other plugins that come with
QGIS. You can also specify an additional path for QGIS to search for
plugins by using the QGIS_PLUGINPATH environment variable. OK,
enough of that, let’s get started writing our plugin.

Setting Up the Structure

Back in the old days (around version 0.9) we had to create all the Boilerplate: standardized pieces of
text for use as clauses in contracts or
as part of a computer program

boilerplate for a Python plugin by hand. This was tedious and ba-
sically the same for each plugin. Fortunately that’s no longer the
case—we can generate a plugin template using the Plugin Builder.

The Plugin Builder is itself a Python plugin that takes some input
from you and creates all the files needed for a new plugin. It’s
then up to you to customize things and add the code that does
the real work. To use the Plugin Builder, first install it from the
Plugins→Fetch Python Plugins menu as seen in Figure 15.2.

Figure 15.2: Installing the Plugin
BuilderWhen you click on the Install plugin button the Plugin Builder will

be installed and you’ll find a tool for it on the Plugins toolbar and

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

276 CHAPTER 15. GIS SCRIPTING

menu entries under Plugins→Plugin Builder

Let’s generate the structure for our Zoom to Point plugin by click-
ing on the Plugin Builder tool or menu item. We are presented
with a dialog that contains all the fields needed to create the plugin.
On the left side of the plugin dialog you’ll see some hints about
what is expected for each field. Figure 15.3 shows all the fields
needed to generate the Zoom to Point plugin.

Figure 15.3: Plugin Builder Ready to
Generate the Zoom to Point Plugin

When we click on OK, the Plugin Builder generates a bunch of files:

icon.png
A default icon used on the toolbar. You will likely want to cus-
tomize this to better represent your plugin.

__init__.py
This script initializes the plugin, making it known to QGIS. The
name, description, version, icon, and minimum QGIS version are
each defined as Python methods.

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 277

Makefile
This is a GNU makefile that can be used to compile the resource
file resources.qrc and the user interface file (.ui). This requires
gmake and works on both Linux and Mac OS X and should also
work under Cygwin on Windows.

metadata.txt
The metadata file contains information similar to the methods in
__init.py__. Beginning with QGIS 2.0, the metadata file will be
used instead of __init.py__ to validate and register a Python
plugin.

resources.qrc
This is a Qt resource file that contains the name of the plugin’s
icon.

ui_zoomtopoint.ui
This is the Qt Designer form that provides a blank dialog with
OK and Cancel buttons. It’s up to you to customize this to build
your plugin’s user interface.

zoomtopoint.py
This is the main Python class for your plugin that handles load-
ing and unloading of icons and menus, and implements the run

method that is called by QGIS when your plugin is activated.
You’ll need to customize the run method to make the plugin do
its magic.

zoomtopointdialog.py
This Python class contains the code needed to initialize the plu-
gin’s dialog.

You’ll notice the naming of a number of the files is based on a lower
case version of the name you provide for your plugin, in this case
zoomtopoint.

After the plugin generates the needed files, a results dialog is shown
that contains some helpful information, as shown in Figure 15.4, on
the next page.

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

278 CHAPTER 15. GIS SCRIPTING

Figure 15.4: Results of Generating
the ZoomToPoint Plugin

The results dialog contains helpful information including:

• Where the generated plugin was saved
• The location of your QGIS plugin directory
• Instructions on how to install the plugin
• Instructions on how to compile the resource and user interface

files
• How to customize the plugin to make it do something useful

At a minimum the only files we have to modify to get the plugin
functional are the user interface file (.ui) and the implementation
file (zoomtopoint.py). If you need additional resources (icons or
images) you will need to modify resources.qrc.

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 279

Defining Resources

If you use the Plugin Builder you don’t have to modify the resources
file, but you do have to compile it. Let’s take a look at what’s in the
resource file:
<RCC>

<qresource prefix="/plugins/zoom_to_point" >

<file>icon.png</file>

</qresource>

</RCC>

This resource file uses a prefix to prevent naming clashes with other
plugins. It’s good to make sure your prefix will be unique—usually
using the name of your plugin is adequate.5 The icon is just a PNG 5 Plugin Builder created the prefix for

you based on the plugin name.image that will be used in the toolbar when we activate our plugin.
You can create your own PNG or use an existing one. The only real
requirement is that it be 22-by-22 pixels so it will fit nicely on the You don’t have to change the icon dur-

ing development—the default created
by Plugin Builder works fine.

toolbar. You can also use other formats (XPM for one), but PNG is
convenient, and there are a lot of existing icons in that format.

Once we have the resource file built, we need to use the PyQt re-
source compiler to compile it:

pyrcc4 -o resources.py resources.qrc

The -o switch is used to define the output file. If you don’t include
it, the output of pyrcc4 will be written to the terminal, which is
not really what we’re after here. Now that we have the resources
compiled, we need to build the GUI to collect the information for
ZoomToPoint.

Customizing the GUI

Plugin Builder created the GUI for us, but it needs to have controls
added to it in order to get our plugin working. To do this, we’ll use
the same tool that C++ developers use: Qt Designer. This is a visual
design tool that allows you to create dialog boxes and main win-
dows by dragging and dropping widgets and defining their prop-
erties. Designer is installed along with Qt, so it should be already
available on your machine.

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

280 CHAPTER 15. GIS SCRIPTING

Figure 15.5: Plugin dialog box in Qt
Designer

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 281

Our dialog box is pretty simple. In Figure 15.5, on the facing page,
you can see the dialog box in Designer, along with the widget
palette and the property editor. It’s already complete, but let’s take
a look at what we had to do to build it. It’s going to be a quick
tour since we won’t go into all the intricacies of Designer. If you
want to get into the nitty-gritty, see the excellent documentation on
Designer on the Qt website6 or in your Qt documentation directory. 6 http://doc.qt.nokia.com

We start by opening our generated dialog box using the File menu
and selecting ui_zoomtopoint.ui. Then we add text labels and text
edit controls, as shown in Figure 15.5, on the preceding page. We
also added a spin control for scaling the view. You don’t have to set
any properties of the text edit controls, but it can be convenient to
name them something other than the default. In this case, I named
them xCoord, yCoord, and spinBoxScale. This makes it easier to
reference them in the code (for those of us with short memories).
For our dialog box, we don’t need to change the default actions of
the OK and Cancel buttons. Once we have all the controls on the
form, we’re ready to generate some code from it.

To convert our completed dialog box to Python, we use the PyQt
pyuic4 command to compile it:

pyuic4 -o ui_zoomtopoint.py ui_zoomtopoint.ui

This gives us ui_zoomtopoint.py containing the code necessary to
create the dialog box when the plugin is launched. It’s important
to maintain the naming convention as the generated Python code
relies on specific names in order to find the components it needs.
For example, the Python script that initializes the dialog imports
ui_zoomtopoint.py:

from ui_zoomtopoint import Ui_ZoomToPoint

If the compiled dialog is not named properly the plugin will fail to
initialize.

Our GUI is now ready for use. All we need to write now is the
Python code to interact with the QGIS map canvas.

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

http://doc.qt.nokia.com

282 CHAPTER 15. GIS SCRIPTING

Getting to Zoom

Up to this point we’ve been laying the groundwork for our plu-
gin. Before we write the code to zoom the map, let’s take a brief
look at some of the requirements for our plugin that are found in
zoomtopoint.py. The Plugin Builder generates this code for us but
it is good to get an idea of what it does.

Every Python script that uses the QGIS libraries and PyQt needs
to import the QtCore and QtGui libraries, as well as the QGIS core
library. This gives us access to the PyQt wrappers for our Qt ob-
jects (like our dialog box) and the QGIS core libraries. Here are
the first few lines from zoomtopoint.py, excluding the header com-
ments that appear at the beginning of the file:

zoomtopoint.py
1 # Import the PyQt and QGIS libraries

2 from PyQt4.QtCore import *
3 from PyQt4.QtGui import *
4 from qgis.core import *
5 # Initialize Qt resources from file resources.py

6 import resources

7 # Import the code for the dialog

8 from zoomtopointdialog import ZoomToPointDialog

9

10 class ZoomToPoint:

11 ...

You can see that in lines 2 through 4 we import the needed Qt
libraries as well as the QGIS core library. Following that we import
the resources that contain our icon definition and in line 8 we import
the dialog loader class. Line 10 begins our class definition for the
plugin. The implementation of our plugin all takes place within
the ZoomToPoint class. The methods we are about to discuss are all
members of ZoomToPoint and are shown in the listing below:

zoomtopoint.py
10 class ZoomToPoint:

11

12 def __init__(self, iface):

13 # Save reference to the QGIS interface

14 self.iface = iface

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 283

15

16 def initGui(self):

17 # Create action that will start plugin configuration

18 self.action = QAction(QIcon(":/plugins/zoomtopoint/icon.png"), \

19 "Zoom to point...", self.iface.mainWindow())

20 # connect the action to the run method

21 QObject.connect(self.action, SIGNAL("triggered()"), self.run)

22

23 # Add toolbar button and menu item

24 self.iface.addToolBarIcon(self.action)

25 self.iface.addPluginToMenu("&Zoom to point...", self.action)

26

27 def unload(self):

28 # Remove the plugin menu item and icon

29 self.iface.removePluginMenu("&Zoom to point...",self.action)

30 self.iface.removeToolBarIcon(self.action)

31

32 # run method that performs all the real work

33 def run(self):

34 # create and show the dialog

35 dlg = ZoomToPointDialog()

36 # show the dialog

37 dlg.show()

38 result = dlg.exec_()

39 # See if OK was pressed

40 if result == 1:

41 # do something useful (delete the line containing pass and

42 # substitute with your code

43 pass

When the class is first instantiated, we store the reference to the
iface object using the __init__ method. This method gets called
whenever we create a ZoomToPoint object. We store iface as a class
member because we are going to use it later when we need access
to the map canvas.

As far as QGIS is concerned, plugins must implement only two
methods: initGui and unload. These two methods are used to
initialize the user interface when the plugin is first loaded and clean
up the interface when it’s unloaded. Let’s take a look at what we
need to initialize our plugin GUI.

First we need to create what’s called an action. This is a Qt object of
type QAction. It’s used to define an action that will later be used on
a menu or a toolbar. On line 18, we create our action by supplying

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

284 CHAPTER 15. GIS SCRIPTING

three arguments:

• The icon for the toolbar. This is a combination of the prefix
(/plugins/zoom_to_point) and the icon file name (icon.png) as
specified in our resources file.

• Some text that’s used in the menu and tooltip, in this case “Zoom
To Point plugin.”

• A reference to the parent for the plugin, in this case the main
window of QGIS.

On line 21, we do one last thing with the action to connect it to
the run method. This basically connects things so that when the
OK button on the dialog box is clicked the run method in our
ZoomToPoint class is called.

Next we need to actually put our nicely configured action on the
menu and toolbar in the GUI. The QgisInterface class that we
played with in the Python console contains the methods we need.
On line 24, we use addToolBarIcon to add the icon for our tool to the
plugin toolbar in QGIS. To add it to the menu, we use addPluginToMenu
method, as shown on line 25. Now our GUI is set up and ready to
use.

The unload method is pretty simple. It uses the removePluginMenu

and removeToolBarIcon methods to remove the menu item and the
icon from the toolbar. Remember this method is called only when
you unload the plugin from QGIS using the Plugin Manager.

Finally, we are ready to add the bit of code that does the real work.
Like most GUI applications, the bulk of the code has to do with the
user interface while a few bytes do the actual work. In the previ-
ous listing the run method is shown as it was generated by Plugin
Builder. In the listing below we have modified the run method to
zoom to a point.

zoomtopoint.py
32 # run method that performs all the real work

33 def run(self):

34 # create and show the ZoomToPoint dialog

35 dlg = ZoomToPointDialog()

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

15.2. QGIS 285

36 dlg.show()

37 result = dlg.exec_()

38 # See if OK was pressed

39 if result == 1:

40 # Get the coordinates and scale factor from the dialog

41 x = dlg.ui.xCoord.text()

42 y = dlg.ui.yCoord.text()

43 scale = dlg.ui.spinBoxScale.value()

44 # Get the map canvas

45 mc=self.iface.mapCanvas()

46 # Create a rectangle to cover the new extent

47 extent = mc.fullExtent()

48 xmin = float(x) - extent.width() / 200 * scale

49 xmax = float(x) + extent.width() / 200 * scale

50 ymin = float(y) - extent.height() / 200 * scale

51 ymax = float(y) + extent.height() / 200 * scale

52 rect = QgsRectangle(xmin, ymin, xmax, ymax)

53 # Set the extent to our new rectangle

54 mc.setExtent(rect)

55 # Refresh the map

56 mc.refresh()

The first step is to create the dialog box on line 35, show it, and then
call the exec_ method. This causes the dialog box to show itself and
then wait for some user interaction. The dialog box remains up until
either the OK or Cancel button is clicked. Once a button is clicked,
we test to see whether it was the OK button on line 39. If so, we are
then ready to zoom the map.

First we have to retrieve the x and y coordinates and the scale that
you entered on the dialog box (lines 41 through 43). We store these
in local variables just to make the next step a bit more readable in
the code. Once we have the user inputs, we fetch the extent rect-
angle from the map canvas using the fullExtent method (lines 47).
extent. In lines 48 through 52 we calculate the new bounds using
the scale value and a constant and use them to create a new rectan-
gle. Once we have the rectangle, we are ready to zoom the map by
calling the map canvas setExtent method (line 54). To actually get
the map to zoom, we call the map canvas refresh method in line 56

and the map zooms to the rectangle we specified. Once complete,
our plugin stands by ready for the next request.

Let’s summarize the process of creating a plugin. First we generate

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

286 CHAPTER 15. GIS SCRIPTING

a template using Plugin Builder. Next we optionally set up our
resource file with a custom icon and design the dialog box using
Qt Designer. Finally, we implement the run method where the real
work of showing the dialog box, collecting the input, and zooming
the map takes place. While we stretched out the explanation, there
really isn’t all that much hand written code involved in making the
plugin. In fact, for the ZoomToPoint plugin there are less than 80

lines of actual code, of which we wrote very little by hand.

There are a number of enhancements you could add to the plugin,
including the ability to “remember” the x, y, and scale values that
you used the previous go. If you got really fancy, you could also
figure out how to set a marker at the point after you zoom. Come
to think of it, once you add those features, send them to me, and
I’ll include them in the next release of the plugin. Just to prove
it works, you can see the plugin and the values we just entered in
Figure 15.6, on the facing page. Behind it you’ll see the map zoomed
to the coordinates we specified. Notice the magnifying glass icon on
the right of the Plugins toolbar (just above the layer list). That’s the
icon I specified for the final version of the plugin, and it indeed
shows up on the toolbar. If we were to look in the Plugins menu,
we would find an entry for Zoom to Point as well.

Writing a QGIS plugin in Python is pretty easy. Some plugins won’t
require a GUI at all. For example, you might write a plugin that
returns the map coordinates for the point you click the map. Such
a plugin wouldn’t require any user input and could use a standard
Qt MessageBox to display the result. You can also write plugins for
QGIS in C++, but that’s another story and one I’ll let you write.77 Actually, you can find information on

writing QGIS plugins in C++ on the
QGIS wiki at http://wiki.qgis.

org.
A PyQGIS Application

A stand-alone application is a step beyond a QGIS plugin. In some
ways, they are very similar. We need to create a GUI and use the
same imports. On the other hand, we don’t have to write all that
code to interface with the QGIS plugin mechanism. A stand-alone
application does require a lot more GUI coding. Rather than build
an application here, I’ll point you at a simple tutorial for more in-

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

http://wiki.qgis.org
http://wiki.qgis.org

15.2. QGIS 287

Figure 15.6: ZoomToPoint plugin in
use

formation.8 8 http://geospatialdesktop.

com/Creating_a_Standalone_

GIS_Application_1

To get the complete chapter and book, see http://locatepress.com

Excerpted from The Geospatial Desktop Copyright © 2012 Gary Sherman, All rights reserved

http://geospatialdesktop.com/Creating_a_Standalone_GIS_Application_1
http://geospatialdesktop.com/Creating_a_Standalone_GIS_Application_1
http://geospatialdesktop.com/Creating_a_Standalone_GIS_Application_1
http://locatepress.com

	Table of Contents
	Forward
	GIS Scripting
	GRASS
	QGIS

